skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Xiaohe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Global assessments predict the impact of sea-level rise on salt marshes with present-day levels of sediment supply from rivers and the coastal ocean. However, these assessments do not consider that variations in marsh extent and the related reconfiguration of intertidal area affect local sediment dynamics, ultimately controlling the fate of the marshes themselves. We conducted a meta-analysis of six bays along the United States East Coast to show that a reduction in the current salt marsh area decreases the sediment availability in estuarine systems through changes in regional-scale hydrodynamics. This positive feedback between marsh disappearance and the ability of coastal bays to retain sediments reduces the trapping capacity of the whole tidal system and jeopardizes the survival of the remaining marshes. We show that on marsh platforms, the sediment deposition per unit area decreases exponentially with marsh loss. Marsh erosion enlarges tidal prism values and enhances the tendency toward ebb dominance, thus decreasing the overall sediment availability of the system. Our findings highlight that marsh deterioration reduces the sediment stock in back-barrier basins and therefore compromises the resilience of salt marshes. 
    more » « less
  4. Abstract

    Coastal wetlands are nourished by rivers and periodical tidal flows through complex, interconnected channels. However, in hydrodynamic models, channel dimensions with respect to model grid size and uncertainties in topography preclude the correct propagation of tidal and riverine signals. It is therefore crucial to enhance channel geomorphic connectivity and simplify sub‐channel features based on remotely sensed networks for practical computational applications. Here, we utilize channel networks derived from diverse remote sensing imagery as a baseline to build a ∼10 m resolution hydrodynamic model that covers the Wax Lake Delta and adjacent wetlands (∼360 km2) in coastal Louisiana, USA. In this richly gauged system, intensive calibrations are conducted with 18 synchronous field‐observations of water levels taken in 2016, and discharge data taken in 2021. We modify channel geometry, targeting realism in channel connectivity. The results show that a minimum channel depth of 2 m and a width of four grid elements (approximatively 40 m) are required to enable a realistic tidal propagation in wetland channels. The optimal depth for tidal propagation can be determined by a simplified cost function method that evaluates the competition between flow travel time and alteration of the volume of the channels. The integration of high spatial‐resolution models and remote sensing imagery provides a general framework to improve models performance in salt marshes, mangroves, deltaic wetlands, and tidal flats.

     
    more » « less
  5. Abstract

    Sediment budget and sediment availability are direct metrics for evaluating the resilience of coastal bays to sea‐level rise (SLR). Here we use a high‐resolution numerical model of a tidally dominated marsh‐lagoon system to explore feedbacks between SLR and sediment dynamics. SLR augments tidal prism and inundation depth, facilitating sediment deposition on the marsh platform. At the same time, our results indicate that SLR enhances ebb‐dominated currents and increases sediment resuspension, reducing the sediment‐trapping capacity of tidal flats and bays and leading to a negative sediment budget for the entire system. This bimodal distribution of sediments budget trajectories will have a profound impact on the morphology of coastal bays, increasing the difference in elevation between salt marshes and tidal flats and potentially affecting intertidal ecosystems. Our results also clearly indicate that landforms lower with respect to the tidal frame are more affected by SLR than salt marshes.

     
    more » « less